Problem:1

3 Employees of an Insurance co-pressed 600 polices per week. They worked 5 days in a week and 8 hours per day in the company. Find their labour productivity.

Solution:

We Know,

$$
\text { Labour Productivity }=\frac{\text { Input }}{\text { Output }}
$$

Given;
Output=600 Insurance policies in a week
Input=1 week $\times 5$ days $\times 8$ hours $\times 3$ employers $=120$ hours

$$
\text { Labour Productivity=}=\frac{600 \text { Policies }}{120 \text { Hours }}
$$

=5 Polices/hour
Individually; $\begin{aligned} P & =\frac{5 \text { Policies }}{3 \text { Hours }} \\ & =1.67 \text { polices } / \text { hour }\end{aligned}$
Ans: 1.67 policies/hour

Problem:2

A group of workers processed 400 units of product at a certain period of time which standard price are $\$ 10$ each. The accountant reported that actual cost of production was $\$ 1000$ for labour; $\$ 400$ materials; $\$ 200$ for transport; $\$ 50$ for advertisement; \$50 for overhead cost. Find the multi-factor ratio.

Solution:

We Know,

Productivity $=\frac{\text { Input }}{\text { Output }}$

Given;
Output $=(\$ 400$ units $\times \$ 10$ each $)=\$ 4000$
Input=(Labour Cost + Material Cost + Transport Cost + Overhead Cost + Advertisement Cost)

$$
=(\$ 1000+\$ 400+\$ 200+\$ 50+\$ 50)
$$

=\$1700

Productivity $=\frac{\$ 4000}{\$ 1700}$
$=2.35$
Ans: 2.35

Problem:3

Student's tution fee at Oxford University is $\$ 100$ per semester per credit hour. The U.K states supplements the tuition fee dollar to dollar. Average class size a course in 50 students and per course in 3 credit hour.

Labour credits are \$4000 per class; materials cost are \$20 per student; (Exam, Class, Presentation, Assignment, tour, Field work etc) are $\$ 25000$. From the information find the multi-factor ratio.

Solution:

We Know,

Productivity $=\frac{\text { Input }}{\text { Output }}$

Given;
(1 class +1 Course); (3 credit $\times 50$ students)

$$
=(\$ 100+\$ 100) \quad=150 \text { hour }
$$

$$
=\$ 200
$$

Output=(\$200×150)=\$30000
Input=(Labour credit + Materials cost + other cost)
$=\{\$ 4000+(20 \times 50)+\$ 25000\}=\$ 30000$
Productivity $=\frac{\$ 30000}{\$ 30000}$
$=1$
Ans: 1.

Problem 4:

Let Income of Mr. "X" increase from 300TK to 500TK and the demand of him/her also increase from 400 unit to 600 unit .Find out income Elasticity (I.E)

Solution:

Income Elasticity $=\frac{\text { Changing of Demand }}{\text { Demand Old }} \div \frac{\text { Change of Income }}{\text { Income Old }}$

Or,

$$
\text { I.E }=\frac{\Delta D}{D(0)} \div \frac{\Delta I}{I(0)}
$$

$\Delta D=(600-400)$ unit $=200$ unit
$\Delta I=(500-300)$ TK $=200 \mathrm{TK}$
$D(0)=400$ unit
$\mathrm{I}(\mathrm{O})=300 \mathrm{tk}$
$=\frac{200}{400} \div \frac{200}{300}$.
$=\frac{200}{400} \times \frac{300}{200}$
$=\frac{3}{4}$
$=0.75$ (Ans.)

Problem 5:

Price of " X " Product is TK. 100 and it's demand is 1000 prices. Demand increase of ' X ' from 1000Tk. To 1500Tk, When the price of ' γ ' increases from 2000 Tk. to 3000 Tk. Find Cross Elasticity(C.E).

Solution:

$$
\begin{aligned}
& \text { Cross Elastricity (C.E) }=\frac{\text { Change of Demand ' } X \text { ' Product }}{\text { Demand(Old) }} \\
& \text { Cross Elastricity (C.E) }=\frac{\text { Change of Demand ' } Y \text { ' Product }}{\text { Demand (old) }}
\end{aligned}
$$

Cross Elastrcity $=\frac{500}{1000} \div \frac{1000}{2000}$

$$
=\frac{500}{1000} \times \frac{1000}{2000}=1 \text { (Ans.) }
$$

